Year 2 Pure Chapter 8 - Parametric Equations

Parametric Graphs
The x co-ordinate and the y co-ordinate are calculated independently of each other.

x and y co-ordinates are calculated using the t variable

Parametric to Cartesian without Trig functions

x equation:

make \boldsymbol{t} the subject.
y equation:
substitute the \boldsymbol{t} equation into the y equation.

Example A

$$
\begin{aligned}
& x=2 t \\
& y=t^{2}
\end{aligned}
$$

Make t the subject:

$$
t=\frac{x}{2}
$$

Substitute into the y equation:

$$
y=\frac{x^{2}}{4}
$$

Parametric to Cartesian with Trig functions

Identify a trig identify that connects the x and y equations.

Example A

$$
\begin{aligned}
& x-2=\sin t \\
& y+3=\cos t
\end{aligned}
$$

can be connected by

$$
\sin ^{2} t+\cos ^{2} t=1
$$ to give

$$
(x-2)^{2}+(y+3)^{2}=1
$$

Example B

$$
\begin{gathered}
x=\sin t \\
y=\sin 2 t
\end{gathered}
$$

can be connected by

$$
\begin{gathered}
y=2 \sin t \cos t \\
\text { and }
\end{gathered}
$$

$\sin ^{2} t+\cos ^{2} t=1$ rearrange to
$\sin t=\sqrt{1-\cos ^{2} t}$ then substitute to give $y=2 x \sqrt{1-\cos ^{2} t}$

