Level 2 Further Maths

Stationary Points

Corbettmoths

Ensure you have: Pencil or pen

Guidance

1. Read each question carefully before you begin answering it.
2. Check your answers seem right.
3. Always show your workings

Revision for this topic

www.corbettmaths.com/more/further-maths/

1. A curve has equation $y=x^{2}-4 x+21$
(a) Find $\frac{d y}{d x}$
\qquad
(b) Hence, find the coordinates of the minimum point.
2. A curve has equation $y=1+x-x^{2}$
(a) Find $\frac{d y}{d x}$
(b) Hence, find the coordinates of the maximum point.
3. A curve has equation $y=x^{3}-3 x^{2}+1$

Work out the coordinates of the stationary points, A and B.
$A=$
$B=$
(5)
4. $y=2 x^{3}-9 x^{2}+12 x-9$
(a) Work out $\frac{d y}{d x}$
(b) Hence, work out the coordinates of the stationary points of

$$
y=2 x^{3}-9 x^{2}+12 x-9
$$

and
5. (a) Work out the stationary points on the curve $y=x^{3}-3 x$
and
(4)
(b) Sketch $y=x^{3}-3 x$

6. The curve C has equation $y=3 x^{4}-12 x^{3}+2$
(a) Find $\frac{d y}{d x}$
\qquad
(b) Find $\frac{d^{2} y}{d x^{2}}$
(c) Show that C has a stationary point when $x=3$
(d) Determine the nature of this stationary point, giving a reason for your answer
7. The curve C has equation $y=-x^{3}+12 x^{2}-36 x$

Work out the coordinates of any stationary point on this curve and determine their nature
8. The equation of a curve is $y=x^{3}-\frac{1}{2} x^{2}+a x+1$ where a is a constant The curve has a maximum point at $\left(-\frac{2}{3}, \frac{49}{27}\right)$

The curve has a minimum point at $(1,-0.5)$
Work out the value of a
(6)
9. $y=f(x)$ has exactly two stationary points.

The stationary points are
a minimum at $D(3,-2)$
a maximum at $\mathrm{E}(b, c)$ where $0<b<3$ and $-2<c<0$
Sketch the curve and label D and E.

