Exam Questions – Differentiation: More Trigonometric Functions

Q1.

(i) Given that

 $x = \sec^2 2y, \quad 0 < y < \frac{\pi}{4}$

Show that

$$\frac{dy}{dx} = \frac{1}{4x\sqrt{x-1}}$$

(ii) Given that

$$y = (x^2 + x^3) \ln 2x$$

Find the exact of $\frac{dy}{dx} at x = \frac{e}{2}$, giving your answer in its simplest form

(5)

(4)

(Total Marks 9)

Q2.

(a) Differentiate

$$\frac{\cos 2x}{\sqrt{x}}$$

with respect to x.

(b) Show that $\frac{d}{dx}$ (sec² 3*x*) can be written in the form

 $\mu(\tan 3x + \tan^3 3x)$

where μ is a constant.

(c) Given $x = 2 \sin \left(\frac{y}{3}\right)$, find $\frac{dy}{dx}$ in terms of x, simplifying your answer.

(4)

(Total 10 marks)

(3)

(3)

Q3.

- (i) Differentiate with respect to x
 - (a) $y = x^3 \ln 2x$
 - (b) $y = (x + \sin 2x)^3$

Given that $x = \cot y$,

(ii) show that $\frac{dy}{dx} = \frac{-1}{1+x^2}$

(5) (Total 11 marks)

(6)

Q4.

The current, *I* amps, in an electric circuit at time *t* seconds is given by

$$I = 16 - 16(0.5)^t$$
, $t \ge 0$

Use differentiation to find the value of $\frac{dI}{dt}$ when t = 3.

Give your answer in the form In *a*, where *a* is a constant.

(5) (Total 5 marks) Q5.

Differentiate with respect to x, giving your answer in its simplest form,

(a)
$$x^2 \ln(3x)$$

(b)
$$\frac{\sin 4x}{x^3}$$

(5)

(4)

(Total 9 marks)

Q6.

- (a) Differentiate with respect to x,
 - (i) $e^{3x}(\sin x + 2\cos x)$,
 - (ii) $x^3 \ln (5x + 2)$.

(3) (3) (Total 5 marks)