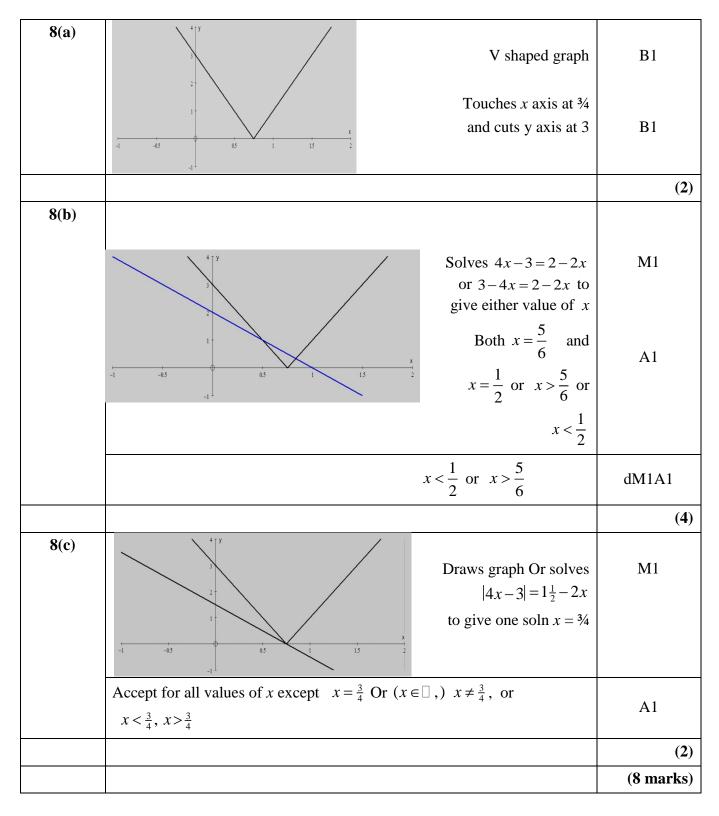
1(a)	$fg(x) = \frac{28}{x-2} - 1$	M1
	$\left(=\frac{30-x}{x-2}\right)$	
	Sets $fg(x) = x \Rightarrow \frac{28}{x-2} - 1 = x$	
	$\Rightarrow 28 = (x+1)(x-2)$	M1
	$\Rightarrow x^2 - x - 30 = 0$	
	$\Rightarrow (x-6)(x+5) = 0$	dM1
	$\Rightarrow x = 6, x = -5$	A1
		(4)
1(b)	<i>a</i> = 6	B1ft
		(1)
		(5 marks)

y Shape including cusp	B1ft
y Shape including cusp Touches or crosses the x axis at (1,0) Asymptote given as $x=0$	B1ft B1ft B1
^y Shape	B1
Crosses at (5, 0)	B1ft
Asymptote given as $x = 4$	B1
$O = \begin{bmatrix} x, y \\ y \\ x \end{bmatrix} = 4$	
	(7 marks)


3 (a)	y≥3	B1
		(1)
2(1.)	$y = 3 + \sqrt{x+2} \Rightarrow y - 3 = \sqrt{x+2} \Rightarrow x = (y-3)^2 - 2$	M1 A1
3(b)	$\Rightarrow g^{-1}(x) = (x-3)^2 - 2, \text{ with } x \ge 3$	A1
		(3)
	$g(x) = x \Longrightarrow 3 + \sqrt{x+2} = x$	
3(c)	$\Rightarrow x+2=(x-3)^2 \Rightarrow x^2-7x+7=0$	M1 A1
	$\Rightarrow x = \frac{7 \pm \sqrt{21}}{2} \Rightarrow x = \frac{7 + \sqrt{21}}{2} \text{ only}$	M1 A1
		(4)
3 (d)	$a = \frac{7 + \sqrt{21}}{2}$	B1 ft
		(1)
		(9 marks)
4(a)	$y \uparrow$ Shape x coordinates correct	B1 B1 B1
	-5,0 y coordinates correct 0,-12	DI
		(3)
	Shape	B1
	Max at (2,4)	B1
4(b)	2,4 Min at (-3,0)	B1
	-3,0 0 x	
		(3)
		(6 marks)

5 (a)	ff(-3)=f(0),=2	M1 A1
		(2)
5(b)	$y = f^{-1}(x)$	
	Shape	B1
	(2,0) <i>x</i> (0,-3) and	
	(0,-3) (0,-3) and $(0,-3)$ and	B1
		(2)
5(c)	У 🔶	
	y=f(x)-2	
	Shape	B1
	(0,0)	B1
	(0,0) x	
- / ->		(2)
5(d)	y T	D1
	Shape	B1
	(-6,0) or (0,4)	B1
		DI
	(0,4)	
	(-6,0) and (0,4)	B1
	(-6,0) x	
		(3)
		(9 marks)

A level Mathematics Practice Paper – Algebra and functions – Mark scheme
--

6(a)	$\begin{array}{c c} y \\ P(0,11) \\ Q'(6,1) \\ \hline \\ 0 \\ x \end{array}$	'W' Shape (0, 11) and (6, 1)	B1 B1	
				(2)
6(b)		'V' shape	B1	
	y = 2f(-x)+3	(-6,1)	B1	
	P(0,25)	(0,25)	B1	
				(3)
6(c)	One of $a = 2$ or $b = 6$		B1	
	a = 2 and $b = 6$		B1	
				(2)
			(7 marl	ks)

		D1
7(a)	Shape including cusp	B1
	(-1.5, 0) and $(0, 5)(0,5)(-1.5,0)$ 0	B1
		(2)
7(b)	Shape	B1
	$\uparrow^{y} \qquad y = \mathbf{f}(\mathbf{x}) \tag{0.5}$	B1
		(2)
7(c)	↑ y Shape	B1
	y=2f(3x) (0,10)	B1
	(-0.5, 0)	B1
	(-0.5,0) 0 x	
		(3)
		(7 marks)

9(a)	$x^2 + x - 6 = (x + 3)(x - 2)$	B1
	$\frac{x}{x+3} + \frac{3(2x+1)}{(x+3)(x-2)} = \frac{x(x-2) + 3(2x+1)}{(x+3)(x-2)}$	M1
	$=\frac{x^2+4x+3}{(x+3)(x-2)}$	A1
	$= \frac{(x+3)(x-2)}{(x+3)(x-2)}$ $= \frac{(x+1)}{(x+3)(x-2)}$ cso	
	$=\frac{(x+1)}{(x-2)}$ cso	A1*
		(4
9(b)	One end either $(y) > 1, (y) \ge 1$ or $(y) < 4, (y) \le 4$	B1
	1 < <i>y</i> < 4	B1
		(2
9(c)	Attempt to set	
	Either $g(x) = x$ or $g(x) = g^{-1}(x)$ or $g^{-1}(x) = x$ or $g^{2}(x) = x$	
	$\frac{(x+1)}{(x-2)} = x \qquad \frac{x+1}{x-2} = \frac{2x+1}{x-1} \qquad \frac{2x+1}{x-1} = x \qquad \frac{\frac{x+1}{x-2}+1}{\frac{x+1}{x-2}-2} = x$	M1
	$x^2 - 3x - 1 = 0 \Longrightarrow x = \dots$	A1, dM1
	$a = \frac{3 + \sqrt{13}}{2} \operatorname{oe} \left(1.5 + \sqrt{3.25} \right) \qquad \text{cso}$	A1
		(4
		(10 marks

10(a)(i)	V shape on x - axis or coordinates $\left(\frac{1}{2}a,0\right)$ and $(0,a)$	B1
	$\begin{array}{c c} & & \\ \hline \\ \hline$	B1
10(a)(ii)	Their "V" shape translated up or	B1ft
	(0, a+b)	
	(0, $a+b$) Correct shape, position and $(0, a+b)$	B1
		(4)
10(b)	States or uses $a+b=8$	B1
	Attempts to solve $ 2x-a +b = \frac{3}{2}x+8$ in either x or with $x = c$	
	$2c - a + b = \frac{3}{2}c + 8 \Longrightarrow kc = f(a, b)$	M1
	Combines $kc = f(a,b)$ with $a+b=8 \implies c=4a$	dM1 A1
	$combines \ \kappa = 1(u, v) \ \text{with} \ u + v = 0 \implies c = 4u$	
		(4)
		(8 marks)