

$$y = x^{2} + 5x$$

$$y = x(x + 5)$$

$$(rosse) x why y=0 x(x + 5) = 0$$

$$x = 0 x = -5$$

$$x = 0$$

$$x^{2} + 5x = -\frac{1}{2}$$
There is one solution as the graph intersects once.

$$f(x) = x^{2} + 4x + 5$$

$$= (x + 2)^{2} + 4$$

$$= (x + 2)^{2} + 1$$
Minimum point at $(-2, 1)$
by cresses y when $x = 0$ $y = (0)^{2} + 4(0) + 5$

$$= 5$$

$$(-2, 1)$$

$$i \neq (-2, 0.5)$$

25a
$$f(x) = x(x^2 + 4x - 5)$$

 $= x(x - 1)(x + 5)$
Crosses x when $y = 0$
 $x(x - 1)(x + 5) = 0$
 $x = 0$ $x = 1$ $x = -5$
 $y = f(x)$
 $y = f(x + 1)$

8
$$f(x) = (x+3)(x-1)^{2}$$
 $(703583 \times \text{when } y=0)$
 $0 = (x+5)(x-1)^{2}$
 $x=-3 \times x=1$
 $x=0$
 $y=(3)(-1)^{2}$
 $x=3$
 $y=0$
 $y=0$