Year 1 Chapter 10: Forces and Motions
 (Horizontal Motions)

Q1.

A car of mass 1000 kg is towing a caravan of mass 750 kg along a straight horizontal road. The caravan is connected to the car by a tow-bar which is parallel to the direction of motion of the car and the caravan. The tow-bar is modelled as a light rod. The engine of the car provides a constant driving force of 3200 N . The resistances to the motion of the car and the caravan are modelled as constant forces of magnitude 800 newtons and R newtons respectively.

Given that the acceleration of the car and the caravan is $0.88 \mathrm{~m} \mathrm{~s}^{-2}$,
(a) show that $R=860$,
(b) find the tension in the tow-bar.

Q2.

Figure 2
A car of mass 1200 kg is towing a trailer of mass 400 kg along a straight horizontal road using a tow rope, as shown in Figure 2.
The rope is horizontal and parallel to the direction of motion of the car.

- The resistance to motion of the car is modelled as a constant force of magnitude $2 R$ newtons
- The resistance to motion of the trailer is modelled as a constant force of magnitude R newtons
- The rope is modelled as being light and inextensible
- The acceleration of the car is modelled as a m s${ }^{-2}$

The driving force of the engine of the car is 7400 N and the tension in the tow rope is 2400 N .

Using the model,
(a) find the value of a

In a refined model, the rope is modelled as having mass and the acceleration of the car is found to be $a_{1} \mathrm{~m} \mathrm{~s}^{-2}$
(b) State how the value of a_{1} compares with the value of a
(c) State one limitation of the model used for the resistance to motion of the car.

Q3.

A car of mass 800 kg pulls a trailer of mass 200 kg along a straight horizontal road using a light towbar which is parallel to the road. The horizontal resistances to motion of the car and the trailer have magnitudes 400 N and 200 N respectively. The engine of the car produces a constant horizontal driving force on the car of magnitude 1200 N . Find
(a) the acceleration of the car and trailer,
(b) the magnitude of the tension in the towbar.

The car is moving along the road when the driver sees a hazard ahead. He reduces the force produced by the engine to zero and applies the brakes. The brakes produce a force on the car of magnitude F newtons and the car and trailer decelerate. Given that the resistances to motion are unchanged and the magnitude of the thrust in the towbar is 100 N ,
(c) find the value of F.

Q4.

Figure 3
Two particles P and Q, of mass 0.3 kg and 0.5 kg respectively, are joined by a light horizontal rod. The system of the particles and the rod is at rest on a horizontal plane. At time $t=0$, a constant force \mathbf{F} of magnitude 4 N is applied to Q in the direction $P Q$, as shown in Figure 3. The system moves under the action of this force until $t=6 \mathrm{~s}$. During the motion, the resistance to the motion of P has constant magnitude 1 N and the resistance to the motion of Q has constant magnitude 2 N .

Find
(a) the acceleration of the particles as the system moves under the action of \mathbf{F},
(b) the speed of the particles at $t=6 \mathrm{~s}$,
(c) the tension in the rod as the system moves under the action of \mathbf{F}.

At $t=6 \mathrm{~s}, \mathbf{F}$ is removed and the system decelerates to rest. The resistances to motion are unchanged. Find
(d) the distance moved by P as the system decelerates,
(e) the thrust in the rod as the system decelerates.

