Surname								
Other Names								
Candidate Signature								
Centre Number				Candidate Number				
· · · · · ·								
Examiner Comments						Tota	al Mar	ks
	I							
					l			

MATHEMATICS

AS PAPER 1

March Mock Exam (Edexcel Version)

Time allowed: 2 hours

 $\mathbf{C}\mathbf{M}$

Instructions to candidates:

- In the boxes above, write your centre number, candidate number, your surname, other names and signature.
- Answer ALL of the questions.
- You must write your answer for each question in the spaces provided.
- You may use a calculator.

Information to candidates:

- Full marks may only be obtained for answers to ALL of the questions.
- The marks for individual questions and parts of the questions are shown in round brackets.
- There are 14 questions in this question paper. The total mark for this paper is 100.

Advice to candidates:

- You should ensure your answers to parts of the question are clearly labelled.
- You should show sufficient working to make your workings clear to the Examiner.
- Answers without working may not gain full credit.

1 Express $4x^2 + 4x + 3$ in the form	a(x+b) + c, where a	a, b and c are con	istants to be found.	(4)
			TOTAL 4 MARKS	

=|*7*,4|=

Ċ4

2 Show that $\int_{1}^{3} \frac{1}{1} dx = d(x - \sqrt{2})$	
$\int_{1} \frac{1}{\sqrt{x^3}} dx = k(3 - \sqrt{3})$	
where k is a rational number to be found.	(5)
ΤΟΤΑΙ	5 MARKS

3

3 The point A has position vector $3i - 4j$ and the point B has position vector $ai + 7j$, where a is a constant.		
Given that $\left \overrightarrow{AB} \right = 5\sqrt{5}$, find the largest possible value of the constant <i>a</i> .	(4)	

Question 3 continued	
TOTAL 4 MARI	KS

4 The curve *C* has the equation y = f(x), where $f(x) = \tan(x - 40^\circ), \quad 0 \le x \le 360^\circ$ (a) Solve the equation f(x) = 0. (2) (b) Find the coordinates where the curve C crosses the y axis. (1) (c) Write down the equations of any asymptotes to the curve C. (2) (d) Sketch the curve *C*. (2) On your sketch, you should show clearly the coordinates of any points where the curve crosses or meets the coordinate axes and the equations of any asymptotes.

$f(x) = 2x^3 - x^2 - 25x - 12$	
(a) Find the remainder when $f(x)$ is divided by $(x - 2)$.	(2)
(b) Show that $(x + 3)$ is a factor of $f(x)$.	(2)
(c) Solve the equation $f(x) = 0$.	(3)

Question 5 continued	
TOTAL 7 MARKS	

(a) the gradient of the line $v = mr + c$ is m	(2)
(a) the gradient of the line $y = mx + c$ is m	(2)
	1

Question 6 continued	
Т	OTAL 5 MARKS

Question 7 continued	

Question 7 continued

Question 7 continued
TOTAL 7 MARKS

- 8 The curves C_1 and C_2 have the equations $y = 5^{x^2}$ and $y = 4^{k-6x}$ respectively, where k is a constant.
 - (a) Show that x coordinates of the points of intersection between C_1 and C_2 satisfy

$$(\log 5)x^{2} + (6\log 4)x - k\log 4 = 0$$
(4)

(b) Given that the curves C_1 and C_2 do not intersect, show further that

$$k < \frac{9\log 0.25}{\log 5}$$

(3)
J	J	,

Question 8 continued

Do not write
outside the
box

Question 8 continued	

Question 8 continued	
	TOTAL 7 MARKS

9 Figure 2 shows the circle C which passes through the points A(-3, -2) and B(0, -1).

The straight line *l* has the equation 2x - y + 4 = 0 and is a tangent to *C* at *A*. (a) Find

(3)	(i) the gradient of the perpendicular bisector of the line segment AB
(3)	(ii) the equation of the perpendicular bisector of the line segment AB
(5)	(b) Show that the coordinates of the centre of C are $(-1, -3)$.

(c) Calculate the radius of C.

(d) Express the equation of the circle C in the form

$$(x-a)^{2} + (y-b)^{2} = k$$

where a, b and k are constants to be found.

(2)

(2)

Question 9 continued

Question 9 continued

Question 9 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	- -
TOTAL 15 MARKS	

The curve crosses the y-axis at the point (0, 1).

On separate axes, sketch the curves with equation

(a) $y = 2f(x)$	(2)
(b) $y = f'(x)$	(3)

(b)
$$y = f'(x)$$

On each sketch, you should show clearly the coordinates of any points where the curves cross or meet the coordinate axes.

Question 10 continued

TOTAL 5 MARKS

11 The binomial coefficient ${}^{n}C_{r}$ is defined such that

$${}^{n}C_{r} = \binom{n}{r} = \frac{n!}{r!(n-r)!}$$

where n and r are non-negative integers.

(a) Using the definition above directly, show that ${}^{10}C_3 = 120$. (2)

(b) By starting with the right-hand side, or otherwise, prove that

$$\binom{n}{r}\binom{r}{m} = \binom{n}{m}\binom{n-m}{r-m}$$
(3)

(c) Hence, deduce that

$$\binom{n}{r} = \frac{n}{r} \binom{n-1}{r-1}$$
(2)

Question 11 continued

Question 11 continued

Question 11 continued	
	-
	-
	-
	_
	-
	_
	-
	-
	-
	_
	_
	-
	-
	_
	_
	_
	_
	_
	_
	_
	-
]
TOTAL 7 MARKS	

12 (i) Given that $\frac{dy}{dx} = \frac{x^3 - \sqrt{x}}{x^2}, \quad x > 0$ and that when x = 1, y = 4, express y in terms of x. (6) (ii) Jessie proposes that given any two functions f and g, $\int_{0}^{1} f(x)g(x)dx = \int_{0}^{1} f(x)dx \int_{0}^{1} g(x)dx.$ By choosing suitable functions for f and g, show that Jessie's claim is false. (3)

Question 12 continued

Question 12 continued	

Question 12 continued	
TOTAL 9 M	ARKS

13 The curve C_1 has the equation y = f(x) where $f(x) = x^2 - 3\sqrt{x^3} + 4, \ x > 0$ The line *l* is a normal to the curve C_1 when x = 4. (a) Find the equation of the line *l*. Give your answer in the form y = mx + c. (5) The curve C_2 has the equation y = g(x) where $g(x) = 4x^3 + qx^2 - 2x + 10$ and q is a constant. Given that *l* is a tangent to C_2 at x = -1, (b) find the value of q. (3)

Question 13 continued		

Question 13 continued

Question 13 continued		
	TOTAL 8 MARKS	

Figure 4

Figure 4 shows a solid. The solid is formed by attaching a hemisphere with radius r cm to each end of a cylinder, which has radius r cm and height h cm. The centres of cylinder and the hemispheres lie on the same line. The solid has a volume of 120 cm³. (a) (i) Show that

$$h = \frac{120}{\pi r^2} - \frac{4r}{3}$$
(2)

(ii) Hence, obtain an expression for the surface area, $A \text{ cm}^2$, of the solid in terms of r. (1)

- (b) Show that the surface area of the solid is minimised when $r = \left(\frac{90}{\pi}\right)^{\frac{1}{3}}$. (4)
- (c) Justify, by further calculus, that A is a minimum for the value of r in part (b). (3)

38

Question 14 continued

Question 14 continued	
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	_
	-
	-
	-
	J

Question 14 continued	
END OF F	PAPER TOTAL 10 MARKS
	TOTAL FOR PAPER IS 100 MARKS
	Copyright © 2018 crashMATHS Ltd.

