(
	Other names
ber GCE	
aper eference	9MA0/32
	• •
ables (Gree	en), calculator
	ables (Gree

differentiation and integration, or have retrievable mathematical formulae stored in them.

Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs it must be dark (HB or B).
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer **all** questions and ensure that your answers to parts of questions are clearly labelled.
- Answer the questions in the spaces provided there may be more space than you need.
- You should show sufficient working to make your methods clear. Answers without working may not gain full credit.
- Unless otherwise indicated, whenever a value of g is required, take $g = 9.8 \text{ m s}^{-2}$ and give your answer to either 2 significant figures or 3 significant figures.

Information

- A booklet 'Mathematical Formulae and Statistical Tables' is provided.
- The total mark for this part of the examination is 50. There are 5 questions.
- The marks for each question are shown in brackets
 use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Try to answer every question.
- Check your answers if you have time at the end.

Turn over 🕨

Summer 2022 Shadow Papers: 9MA0-32 Mechanics – Set 1 – Question Paper (Version 2.0) © Pearson Education Ltd. [In this question, position vectors are given relative to a fixed origin.] At time t seconds, where t > 0, a particle P has velocity v m s⁻¹ where

$$\mathbf{v} = 6t^2\mathbf{i} - 9t^{\frac{1}{2}}\mathbf{j}$$

(a) Find the speed of P at time t = 2 seconds.

1.

(b) Find an expression, in terms of t, i and j, for the acceleration of P at time t seconds, where t > 0

At time t = 1 seconds, the position vector of P is $(2\mathbf{i} - 4\mathbf{j})$ m.

- (c) Find the position vector of P at time t = 4 seconds.
- (4)

(2)

(2)

(Total for Question 1 is 8 marks)

A rough plane is inclined to the horizontal at an angle α , where $\tan \alpha = \frac{4}{3}$

A toy truck B of mass 10 kg is held in equilibrium on the plane by a horizontal force exerted by a plastic crane of magnitude X newtons, as shown in Figure 1.

The force acts in a vertical plane which contains a line of greatest slope of the inclined plane.

The block *B* is modelled as a particle.

The magnitude of the normal reaction of the plane on B is 100 N.

Using the model,

(0)	11110		(6)
(b)	find	d the acceleration of B down the plane.	
Giv	ven tl	hat the coefficient of friction between B and the plane is 0.25	
The the	e hor plan	rizontal force of magnitude X newtons is now removed and B moves down ne.	
	(ii)	state the direction of the frictional force acting on B .	(1)
(<i>a</i>)	(i)	find the magnitude of the frictional force acting on <i>B</i> ,	(3)

A particle *P* of mass 5 kg is at rest at the point *A* on a smooth horizontal plane.

At time t = 0, two forces, $\mathbf{F}_1 = (2\mathbf{i} - 3\mathbf{j})$ N and $\mathbf{F}_2 = (\alpha \mathbf{i} + \beta \mathbf{j})$ N, where α and β are constants, are applied to *P*

Given that *P* moves in the direction of the vector $(6\mathbf{i} + 4\mathbf{j})$ (*a*) show that

$$4\alpha - 6\beta + 26 = 0$$

At time t = 10 seconds, P passes through the point B.

Given that $\alpha = 4$

(*b*) find the length of *AB*.

(5)

(4)

(Total for Question 3 is 9 marks)

(Total for Question 4 is 11 marks)

A projectile is at rest at the point A on horizontal ground.

The projectile is launched and initially moves at an angle θ to the ground.

The projectile first hits the ground at the point *B*, where AB = 150 m, as shown in Figure 3.

The motion of the projectile is modelled as that of a particle, moving freely under gravity, whose initial speed is $U \,\mathrm{m \ s^{-1}}$

Using this model,

(a) show that
$$U^2 \sin \theta \cos \theta = 735$$

The projectile reaches a maximum height of 20 m above the ground.

(b) Show that
$$U^2 = \frac{14161}{8}$$

In a refinement to the model, the effect of air resistance is included. The motion of the projectile, from A to B, is now modelled as that of a particle whose initial speed is $V \text{ m s}^{-1}$

This refined model is used to calculate a value for V

(c) State which is greater, U or V, giving a reason for your answer.

(1)

(6)

(d) State one further refinement to the model that would make the model more realistic.

(1)

(Total for Question 5 is 12 marks)

TOTAL FOR MECHANICS IS 50 MARKS