Year 2 Pure Chapter 2: Functions - Exam Questions (Total Marks 38)

1. The function f is defined by

$$
\mathrm{f}: x \mapsto 2 \mathrm{x}-5 \quad x \in \mathbb{R}
$$

The function g is defined by

$$
\mathrm{g}: x \mapsto x^{2}-4 x+1, \quad x \in \mathbb{R}, \quad 0 \leq x \leq 5
$$

(a) Find $\mathrm{fg}(2)$.
(b) Find the range of g .
2. The function f is defined by
f: $x \mapsto 2 x-5, \quad x \in \mathbb{R}$.
The function g is defined by
$\mathrm{g}: x \mapsto x(x-6), \quad x \in \mathbb{B}$.
(a) Find the range of $\mathrm{g}(x)$.
(b) Find $\mathrm{fg}(1)$.
3. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto 2 x, \quad x \in \mathrm{R}, \\
& \mathrm{~g}: x \mapsto 4 x+a, \quad x \in \mathrm{R} .
\end{aligned}
$$

(a) Find an expression for $\mathrm{fg}(x)$.
(b) Solve, for x in terms of a, the equation

$$
\mathrm{fg}(x)=3 a .
$$

4. The function f is defined by

$$
\mathrm{f}: x \mapsto 2 x, \quad x \in \mathbb{R} .
$$

(a) Find $\mathrm{f}^{-1}(x)$ and state the domain of f^{-1}.

The function g is defined by

$$
\mathrm{g}: \quad x \mapsto 3 x^{2}+2, \quad x \in \mathbb{R} .
$$

(b) Find $\mathrm{gf}^{-1}(x)$.
(c) State the range of $\mathrm{gf}^{-1}(x)$.
5. The function f is given by

$$
\mathrm{f}: x \mapsto 2+\frac{3}{x+2}, \quad x \in \mathbb{R}, x \neq-2 .
$$

(a) Express $2+\frac{3}{x+2}$ as a single fraction.
(b) Find an expression for $\mathrm{f}^{-1}(x)$.
6. The functions f and g are defined by

$$
\begin{aligned}
& \mathrm{f}: x \mapsto x^{2}-2 x+3, \quad x \in \mathbb{R}, \quad 0 \leq x \leq 4 \\
& \mathrm{~g}: x \mapsto \lambda x+1, \text { where } \lambda \text { is a constant, } x \in \mathbb{R} .
\end{aligned}
$$

(a) Find the range of f.
(b) Given that $\operatorname{gf}(2)=16$, find the value of λ.
7. The functions f and g are defined by

$$
\begin{array}{ll}
\mathrm{f}: x \mapsto 1-2 x^{3}, & x \in \mathfrak{R} \\
\mathrm{~g}: x \mapsto \frac{3}{x}-4, x>0 & x \in \mathfrak{R}
\end{array}
$$

(a) Find the inverse function f^{-1}.
(b) Show that the composite function gf is

$$
\text { gf }: x \mapsto \frac{8 x^{3}-1}{1-2 x^{3}}
$$

(c) Solve $\operatorname{gf}(x)=0$.

